煤炭工程 ›› 2018, Vol. 50 ›› Issue (9): 150-154.doi: 10.11799/ce201809038

• 研究探讨 • 上一篇    下一篇

基于多种算法的火电厂配煤优化方法研究

付轩熠   

  1. 上海电力学院
  • 收稿日期:2018-04-13 修回日期:2018-06-20 出版日期:2018-09-20 发布日期:2018-12-18
  • 通讯作者: 付轩熠 E-mail:543916507@qq.com

Research on coal blending optimization method based on multiple algorithms in thermal power plant

  • Received:2018-04-13 Revised:2018-06-20 Online:2018-09-20 Published:2018-12-18

摘要: 针对解决火电厂目前电煤供应紧张、煤价成本居高不下的现状。文章通过对电厂的实际用煤展开最优炉前配煤研究,方案通过建立以掺烧煤成本最低为目标函数和机组对混煤的工业成分要求作为约束条件的配煤数学模型,利用粒子群算法的局部快速收敛特性优化遗传算法进行模型求解。其单混煤煤质工业成分间的非线性映射关系通过建立GA-BP神经网络预测模型进行预测。通过算例及误差结果证明该方法在煤质预测和求解配煤成本最低的可靠性,可对电厂实际配煤进行指导。

关键词: 配煤优化, 煤质预测, 数学模型, 目标函数, 约束条件, 混煤价格

Abstract: In order to solve the current thermal power plant coal supply shortages, coal prices remain high status quo. In this paper, the optimal coal blending for pre-fired coal is studied through the actual use of coal in the power plant. The plan establishes a coal blending mathematical model that uses the minimum cost of blended coal as the objective function and the unit's requirements for the industrial components of the blended coal as a constraint to use the particle swarm. The local fast convergence feature of the algorithm is optimized by genetic algorithm to solve the model. The non-linear mapping relationship between the industrial components of the single coal blend coal quality is predicted by establishing a GA-BP neural network prediction model. Through the analysis of examples and error results, it is proved that this method can predict and solve the reliability of coal blending with the lowest cost.

中图分类号: